skip to main content


Search for: All records

Creators/Authors contains: "Evans, Rick"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. One intervention thought to foster women’s interest in engineering is introducing girls to STEM or engineering activities. The argument for this is that an increase in interest early in their lives will lead to more women pursuing a career in engineering. The focus of our research is women who are thriving as undergraduate student leaders in engineering project teams. We employ a multi-case study method that involves a sequence of semi-structured interviews. This paper speaks to the findings derived from the life history interview where participants describe their early lives and pre-college education. Our inductive thematic analysis of the data indicates that: (1) The women’s early familial influences allowed non-gender defined ways of being, doing, and aspiring for trying new things. (2) This re/definition of gender in relation to self is reinforced by their success in school and through their accomplishments in other extracurricular activities. Those activities were not confined or even heavily weighted toward STEM. (3) Not all of the women assumed leadership roles throughout their K-12 schooling. Nevertheless, what is common is that through academic and extracurricular engagements they developed confidence, a “can-do” attitude, and a rejection of viewing failures as defining indicators of their ability or potential. Their self-awareness, their confidence, and their persistence in the face of failure are critical because they later function as counter-narratives in the women’s encounters with sexism and other forms of marginalization when in engineering and their project teams. Finally, there is some evidence to suggest that encouraging young girls to involve themselves in STEM and/or engineering may be counterproductive. By unintentionally “pushing” these young girls into engineering, rather than “allowing them to choose for themselves,” we may be encouraging the adoption of masculinist gendered roles associated with engineering. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  2. null (Ed.)
    Laboratory notebooks perform important roles in the engineering disciplines. They at once record an engineer’s work, serve as an important reference for future reports and/or articles, and perform as a kind of journal that enables questioning presuppositions, considering new approaches, and generating new ideas. Given the importance of notebooks, there is surprisingly little scholarship on how to teach their use. Stanley and Lewandowski (2016) surveyed students in undergraduate laboratory courses and evaluated how their notebooks were being used. They found that “few [students] … thought that their lab classes successfully taught them the benefit of maintaining a lab notebook.” Moreover, the authors’ later survey of the literature and of college faculty led them to conclude that in undergraduate lab courses “little formal attention has been paid to addressing what is considered ‘best practice’ for scientific documentation …[or] how researchers come to learn these practices” (Stanley and Lewandowski, 2018). At XXX University, two courses, Interfacing the Digital Domain with the Analog World (AEP 2640) and Engineering Communications (ENGRC 2640) are taught in conjunction. In AEP 2640, students use a computer to control equipment and acquire measurements in an engineering design and experimentation laboratory. Laboratory activities such as the development of a computer interface for an oscilloscope, a set of motors, and a photodiode culminate in the realization of an automated laser scanning microscope system. In ENGRC 2640, students receive instruction and feedback on their lab notebook entries and, in turn, use those notebooks as a resource for preparing a Progress Report and an Instrument Design Report. The instructors encourage peer review in order to facilitate improvement of students’ skills in the art of notebook use while allowing them to develop these skills and personal style through trial and error during the research. The primary learning objectives are: 1) to enable students to engage in real laboratory research; and 2) to develop proficiency with select genres associated with that research. The educational research objectives are: 1) to study students’ developing proficiency in order to generate best practices for teaching and learning scientific documentation; and 2) to better understand the contribution of scientific documentation to the teaching and learning of authentic research. This study is a work-in-progress. We will present the study design. That design involves, first, developing a self-efficacy scale for both conducting laboratory research and performing those genres associated with that research. Self-efficacy or a “person’s awareness of their ability to accomplish a goal” (Kolar et. al, 2013) has proven to be a powerful predictor of achievement. Our intent is to track learner agency. Second, the design also involves conducting a content analysis of students’ laboratory notebooks and reports. Content analysis is a methodology that encourages inferencing "across distinct domains, from particulars of one kind to particulars of another kind" (Krippendorff,, 2019). Our intent is to learn about students' mastery of the engineering design and experimentation process through analyzing their lab notebooks. We will present the results of a preliminary content analysis of a select sample of those notebooks and genres. 
    more » « less